Low-Power Formaldehyde Detector for Space Applications, Phase II

Completed Technology Project (2004 - 2006)

Project Introduction

Trace contamination of the International Space Station (ISS) by formaldehyde -- a known carcinogen -- is a significant threat to crew health. The spacecraft maximum allowable concentration (SMAC) in air is only 40 parts per billion and ambient concentrations appear to be increasing as formaldehyde outgasses from a variety of plastic components. Monitoring formaldehyde levels is difficult because few analytical methods can achieve sufficient sensitivity from instrumentation that can be adapted for space-based operation. The current detection method -- using absorbent "badges" -- relies on post-flight analysis of the adsorbent material. Some of those measurements show formaldehyde concentrations close to the SMAC upper bound. As a result, a need exists for a reliable, fully automated analyzer that can provide continuous monitoring of formaldehyde concentrations on board the ISS. The target detection sensitivity is 10 ppb and the response time should be < 10 minutes. Southwest Sciences proposes the development of an optical analyzer for formaldehyde that is expected to meet the requirements of space-based operation. The instrument will be compact, light weight, require little electrical power and no consumables, and will be able to operate for extended periods (months to years) without maintenance or re-calibration.

Primary U.S. Work Locations and Key Partners

Low-Power Formaldehyde Detector for Space Applications, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Johnson Space Center (JSC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Low-Power Formaldehyde Detector for Space Applications, Phase II

Completed Technology Project (2004 - 2006)

Organizations Performing Work	Role	Туре	Location
☆Johnson Space Center(JSC)	Lead Organization	NASA Center	Houston, Texas
Southwest Sciences, Inc.	Supporting Organization	Industry	Santa Fe, New Mexico

Primary U.S. Work Locations	
New Mexico	Texas

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - └─ TX06.4 Environmental Monitoring, Safety, and Emergency Response
 - └─ TX06.4.1 Sensors: Air, Water, Microbial, and Acoustic

